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Abstract

The McConnell equations combine the differential equations for a simple two-state chemical exchange process
with the Bloch differential equations for a classical description of the behavior of nuclear spins in a magnetic
field. This equation system provides a useful starting point for the analysis of slow, intermediate and fast chemical
exchange studied using a variety of NMR experiments. The McConnell equations are in the mathematical form
of an inhomogeneous system of first-order differential equations. Here we rewrite the McConnell equations in a
homogeneous form in order to facilitate fast and simple numerical calculation of the solution to the equation system.
The McConnell equations can only treat equilibrium chemical exchange. We therefore also present a homogeneous
equation system that can handle both equilibrium and non-equilibrium chemical processes correctly, as long as the
kinetics is of first-order. Finally, the same method of rewriting the inhomogeneous form of the McConnell equations
into a homogeneous form is applied to a quantum mechanical treatment of a spin system in chemical exchange. In
order to illustrate the homogeneous McConnell equations, we have simulated pulse sequences useful for measuring
exchange rates in slow, intermediate and fast chemical exchange processes. A stopped-flow NMR experiment was
simulated using the equations for non-equilibrium chemical exchange. The quantum mechanical treatment was
tested by the simulation of a sensitivity enhanégd-HSQC with pulsed field gradients during slow chemical
exchange and by the simulation of the transfer efficiency of a two-dimensional heteronuclear cross-polarization
based experiment as a function of both chemical shift difference and exchange rate constants.

Introduction In order to discuss chemical exchange as studied
by NMR it is useful to examine the case in which

Nuclear magnetic resonance has become one of thea nucleus exchanges with a rate constabetween
standard techniques for the study of molecular dynam- two sites with different offset frequencie®; andQs.
ics and chemical kinetics and the theory is well estab- Three different situations can then be distinguished
lished (Kaplan and Fraenkel; 1980, Kihne et al., 1979; (McLaughlin and Leigh, 1973). If the exchange rate
Wennerstrom, 1972; Jeener, 1982; Kaplan, 1958; Mc- is slow compared to the frequency differenée <«
Connell, 1958; Gutowsky et al., 1953; Binsch, 1969). |Q; — Qs|, two distinct resonance lines are observed
The exchange of a nucleus between environments dueat 2; and Qg. Only a single resonance line is ob-
to conformational transitions or chemical reactions served at the population weighted average chemical
can be monitored using a number of different NMR shift if the exchange rate is fast compared the chemical
methods. shift differencek > |Q2; — Qg|. The third possibility

is the intermediate chemical exchange or coalescence
" case, which occurs when the exchange rate is sim-

ilar in magnitude to the frequency differenck, ~
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|2 — Qg|. Coalescence is easily identified by exces- cumstances is time dependent. In this paper we show
sive line broadening that might make the resonance an equation system that can treat both equilibrium and
disappear into the background noise. non-equilibrium chemical exchange, as long as the

Different NMR techniques are applied in order to kinetics is of first order. This method of handling first-
study chemical exchange occurring at different time order kinetics can be used together with both classical
scales. Slow exchange reactions are usually stud-mechanics and quantum mechanics.
ied using methods based on longitudinal magneti- A quantum mechanical treatment is necessary
zation such as saturation transfer (Forsén and Hoff- whenever the effects of scalar couplings can not be
man, 1963) or selective inversion recovery. Line-shape ignored. The quantum mechanical description of spin
analysis is a powerful technique when the system is dynamics can be combined with chemical exchange
in the intermediate exchange regime (Gutowsky et al., in the same way as the McConnell equations com-
1953; Kaplan, 1958; McConnell, 1958; Binsch, 1969). bine a classical description of spin dynamics with
For rapid exchange the measurement gfor T, as chemical exchange. The same method of rewriting the
a function of effective RF field strength, either on- inhomogeneous system of equations into a homoge-
resonance (Bloom et al., 1965, Deverell et al., 1970) neous system used for the McConnell equation can be
or off-resonance (Akke and Palmer, 1996), can be usedapplied to the quantum mechanical description.
in order to determine the exchange rate constant.

The Bloch equations (Bloch, 1946) modified for
the effects of chemical exchange, the McConnell Theory
equations (McConnell, 1958), are a convenient theo-
retical starting point for studies of chemical exchange We will first describe the theory for a simple two-
whatever exchange regime or experimental method site first-order chemical reaction in matrix form and
is used. The McConnell equations are in the form discuss how it can be extended to a larger number
of a system of inhomogeneous first-order differential of coupled first-order reactions. We will then discuss
equations. The complications caused by the inhomo- the Bloch equations in matrix form and show how the
geneous form can be solved by separating the equationMcConnell equations can be derived using a product
system into a transverse part and a longitudinal part space of chemical configuration space and the mag-
(Cavanagh et al., 1996; Ernst et al., 1987). This can netization space. We will show how the McConnell
only be done if the transverse components of mag- equations can be made homogeneous using two dif-
netization are not allowed to interchange with the ferent but similar methods. The first method can be
longitudinal magnetization. The transverse part of the applied to systems in chemical equilibrium while the
McConnell equations is immediately homogeneous other method is also applicable for non-equilibrium
and form the basis for line-shape calculations (Mc- systems. Finally, we discuss how a complete quantum
Connell, 1958). The longitudinal part can be made mechanical theory for a heteronuclear two-spin system
homogeneous with the help of a simple substitution in chemical exchange can be obtained using the same
if the system is in chemical equilibrium. These meth- method as described for classical mechanics.
ods of treating the inhomogeneous differential equa-
tion system are obviously not complete solutions to Chemical exchange
the problem since the effect of pulse sequences can
not be simulated when transverse and longitudinal A simple first-order chemical exchange reaction with

magnetization are not allowed to interchange. two components can be described according to (Ca-
The McConnell system of equations can however vVanaghetal., 1996, Ernst et al., 1987)

be rewritten in a homogeneous form without intro- kis

ducing any approximations. With this new system of [ <« [9], (1)

equations complete pulse sequences can be simulated ks

taking into account chemical shifts, RF fields, relax-

ation and chemical exchange. The equation system isWhere kis and ks, are the exchange rate constants
easily extended to larger spin systems. for the forward and reverse reactions, respectively.

The McConnell equations can not be used in or- 1he differential equation system for this chemical ex-
der to simulate non-equilibrium chemical exchange
since the equilibrium magnetization under such cir-
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change is easily set up according to the chemical with
reaction rate law

y Wy = —yBicos(¢),
g L1 = —hislI] +ksi[S], wy = —yBisin(9) (8)
d S| = +kis[I] — ksi[S (2)
g 81 = +hislI] = ksi[S], Q = wo— wRF
which can be written in matrix form as where is the resonance offset frequency anglis
d[1[1] —kis ks [1] the Larmor frequency in rad$, B], wgrr and¢ are
dr | S|~ | kis —ksi [s] | (3) the strength, frequency and phase of the applied RF

field, respectively,y is the magnetogyric ratiowy
andw, are the RF magnetic field components along
the x andy axes in rad s!, respectively,x is the
d relaxation rate of transverse magnetizatipnis the

EA =K 4, ) relaxation rate of longitudinal magnetization alvig

whereA is a vector of concentrations and with the S the equilibrium magnetization.
elements of the kinetic matri¢ defined as The Bloch equations can be rewritten in a homoge-
neous form by appending a constant to the magnetiza-
Ki = kj,r #J, tion vector and by including the vector corresponding
Kj = — ijr. (5) to cc_)rrection fpi equilibrium magnetization into the
vy matrix of coefficients according to

This equation can be generalized to many coupled
first-order reactions according to

The formal solution to Equation (4) is E/2
A(t) =expl[Kt] A(0). (6) E

It is possible to handle higher order chemical re-
actions by defining pseudo first-order rate constants , (9)
(Cavanagh et al., 1996; Ernst et al., 1987). These 0 0 0 © E/2

are calculated by dividing the reaction rates with the 0 Q- M,
concentration of the reactant molecule. In the case of 0 -Q N o My |’
non-equilibrium reactions these pseudo first-order rate
constants are time dependent making the kinetic ma-
trix K time dependent. However, if the system is in WhereE stands for unity. The constant with which
chemical equilibrium the kinetic matrix becomes time we extend the magnetization vector was chosen to be
independent and equivalence with true first-order ki- E/2and notE in order to use the same normalization
netics is obtained (Cavanagh et al., 1996; Ernst et al., as used in the product operator formalism (Sgrensen

SXR

—20Mp @y —wy p M,

1987). etal., 1983). The factor 2 for pMg is due to the minus
sign in front of the matrix and the fact that we Usg
The Bloch equations in the magnetization vector and 6t

The Bloch equations in the rotating frame can be used McConnell equations

to describe the behavior of the magnetization of spins

involved in the chemical exchange if the effect of A product space between chemical configuration
scalar coupling is ignored. The inhomogeneous Bloch space and magnetization (Liouville) space is required
equations (Bloch, 1946) in matrix form are in order to account for the flow of magnetization
during the chemical exchange (Kihne et al., 1979,

d | M o2 -y M Binsch, 1969, Jeener, 1982). The product space is
dr My | = —| =2 & o My created by a direct product of the chemical configura-
M, wy —wy P M,
0
+ 0 7

pMo
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tion space vector and the magnetization space vector
according to

F
I
M, y
Hg]] ] ®| My | = gx (10)
M. s
- SZ -

A new kinetics matrix is formed by a direct product
between the original kinetic matrix in Equation 3 and
a unity matrix of the same size as the magnetization
space,

[—lqs ks ]® é 2 8 _
kis —ksi 00 1
—kis O 0 kg 0 0
0 —ks O 0 ks 0 (11)
0 0 —ks O 0 ks
kis 0 0 —kg O 0
0 ks 0 0 —kg O
0 0 ks 0 0 —kg

The theoretical basis for the direct product is the
sudden jump approximation, which implies that the
magnetization does not change orientation during the
chemical exchange (Jeener, 1982). The chemical ex-
change should also be a Markovian random process
(Jeener, 1982). The differential equation for the chem-
ical exchange of the spin system can thus be written
as

Ix,chem
Iy,chem

E Iz,chem _

dr Sx,chem -
Sy,chem
Sz,chem

(12)

—ks 0 0 kst O 0 Ix,chem
0 —ks O 0 ks O Iy,chem
0 0 —ks O O ks Iz chem
ks 0O O —ks O O Sx,chem
0O ks 0 O —ks O Sy, chem
0 0 kIS 0 0 _kSI Sz,chem

The matrix for the inhomogeneous Bloch equa-
tions must also be expanded to the appropriate product
space. This is performed with a direct product between

the matrix in Equation 7 and a unity matrix of the same
size as the chemical configuration space according to

N Q —o
10 Y
0 1:|®— —-Q A Wy =
Wy —wx P
R Q —wy, 0 0 0
9w e 0 o0 o |
_ ®y —my  pf 0 0 0
0 0 0 As Qs —oy
0 0 0 —Qg As
i 0 0 0 wy —wy ps
The Bloch equations for the two spins are thus
[ Iy nvR
Iy NnMR
9| znvr | _
dr | SxNMR
Sy,NMR
| SzNMR
F X Q2 —wy 0 0 0 Ix, NMR
Q7 N oy 0 0 0 Iy,NMR
®y —o I 0 0 0 Iz NMR
- 0) OX 0 As Q5 —wy Sx,NMR (14)
0 0 0 —Q5 rg oy Sy,NMR
L O 0 0 oy —ox pg SzNMR
[0
0
O]
+ BE
0
_®S

where®; and®g will be described in the next section.

The McConnell equations are the sum of the chem-
ical exchange contribution described by Equation 12
and the Bloch equations from Equation 14 with=
Ix.chem+ IxNMR, €tC, according to
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Iy coefficients as the first column according to
Iy E/2
alrn|_ gl
dt Sx — I§ =
Sy dr gx
S, s)
Mtks @ —wy  —kg 0 0 - 0 0 0 0 0 0 0
-Q; N +thks ox 0 —kg) 0 0 X +ks Qp —wy —ks) 0 0
_ @y —wy prt+ks O 0 —kg| (15) 0 —Q; A +ks ox 0 —kg) 0
—kis 0 0 Ast+ksi Qg —wy — | —20; oy —wx p; +ks 0 0 —kg) (21)
0 —kis 0 —Qs hg+ks  ox 0 —ks 0 0 As+ks Qs —oy
0 0 —kis wy —wx  ps +kg) 0 0 —kis 0 —Qg kg +kg  wy
L 20 0 0 —kis wy —wx pg + kg
I 0 -2
Iy 8 I
I o) Iy
X 4+ s X I':
Sy 0 5
Sy 0 iy
SZ @S -
with Again, the factor—2 for ®; and ®g is due to the

O =p/Mjpo(t),

minus sign in front of the matrix and the fact that we
(16) useE/2in the product space vector and rit
It is also possible to solve the equations for non-

Os = psMso (1), (17) equilibrium reactions by extending the product space
[1] (1) with the time dependent equilibrium magnetization
Mpo(t) = Mp————, 18 lcul ing the kineti i i
10 (?) 0[1] O +S10) (18) calculated using the kinetic matrix according to
S](t Mo
Mso (1) = MOL. (29) Mg
(11 @) + [S] (1) ol &
— y -
The equations for calculating the equilibrium magne- ¢ | &
tization, Equations 18 and 19, can be generalizetlifor S
reactants by dividing each reactant concentration with S
the sum of reactant concentrations using (Ernstetal., xg -kg 0 0 0 0 0 0
. —k|s ki 0 0 0 0 0 0
1987; Cavanagh et al., 1996) 8'8 §' Mbhs B oy kg ,? 8
; =@ M tks o —ks
Mio (1) = Mom. (20) - Ny g ozyl Ifgx Ly +0/<|sx Ok QO ks | @2
- —_ + —wy
Zj: [A] (t)] 0 0 OIS —kis 0 S—QSSI Ag +Sks| wx)
! L 0 —pg 0 0 —kis wy —wx ps + kg
It should be noted that the equilibrium magnetization  _ My
described by ;o andMgg are functions of time if the Mgo
system is not in chemical equilibrium. The McConnell f{
equations can be rewritten in a homogeneous form in * i
the same way as the Bloch equations (Equation 9), if g»f
chemical equilibrium is assumed. This is performed | .

by appending a constant term

to the product space

vector and after that including the vector correspond- ~ The equilibrium magnetization as a function of
ing to equilibrium magnetization into the matrix of time, M;o(t) and Mso(t), is calculated with help of

a copy of the kinetics matrix from Equation 3. This
kinetics matrix is put into the upper left corner of the
matrix in Equation 15 and the result is Equation 22.
The equilibrium magnetization calculated as a func-
tion of time in the first two rows of the matrix is fed
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into the product space part of the matrix by constants
in the first two columns, p; and ps. The limitation

of this equation system is that only first-order kinetics
can be considered.

Quantum mechanics

A system of equations describing a quantum me-
chanical two-spin system during chemical exchange
can be obtained using the same method as described
previously for classical mechanics. The Bloch equa-
tions for x, y and zmagnetization are replaced by
the quantum mechanical master equation in the basis
of the Cartesian product operators. This is necessary
for a complete description of the behavior of two
scalar coupled spié nuclei during pulse sequences.
The complete quantum mechanical master equation
in the basis of Cartesian product operators has pre-
viously been presented both for homonuclear (Allard
et al., 1997) and heteronuclear (Allard et al., 1998)
two-spin systems. The heteronuclear master equa-
tion is published here in a slightly modified form
useful for simulations of TROSY (Pervushin et al.,
1997) type of experiments. The heteronuclear spin
system is assumed to be relaxed by mutual dipole-
dipole interaction as well as chemical shift anisotropy
interaction with the external magnetic field. Cross-
correlation between dipole-dipole (DD) and chemical
shift anisotropy (CSA) relaxation is also considered. It
should be noted that in the quantum mechanical equa-
tionsl andS no longer denote two states in chemical
exchange but instead denote two nuclei scalar coupled
to each other. The homogenous equation is

E/2 T

0

b1
ns

nJ

wrx
eI
0
0

DO OoCOoOOO OO0

(=R = =]

E/2 T




wherel andSlabel*H and!®N, respectively2; and
Qg are the chemical shift offset frequencies in rad;s

Jis the scalar coupling constant in Hz; ang,, sy,

wry andwg, are the RF magnetic field components at

the two frequencies along tixeandy axes in rad s.
The relaxation rates are

As =

IV

ps =

pr =

NV —

v

8s =

d =

Py =

= 3i6 2[3J (ws) + 3J (w))]

= 3A5l—3] (01 — 05)

A A2[2] (0) + 3T (ws) + 37 (0 — ws) rr

+3J (w1) + 37 (w7 + ws)] (24)

+ 3A%[57 (0) + 37 (w9)],

2 A2[2] (0) + 3J (ws) + 3J (0 — w5)
+ 37 (0 + 37 (07 + 05)] (25)
+1A2[37 (0 + 37 (w))]

HA2[3J (w5) + J (0] — w)

26
+6J (w7 + 05)] + A% (w9)], (26)

2 A2[J (0] — 0g) + 37 (o))
+6J (w7 + 09)] + A4 [T (0],

C

(27)

FA3[27 (0) + 37 (ws) + 37 (07 — w5)
+3J (07 + ws)] + 3A%,[J ()] (28)
+ $A2[37(0) + 37 (09)]

2 A3[27 (0) + 37 (w1 — ws) + 37 (1)
+3J (07 + )] + 3A%[J (05)] (29)
+ 342157 (0) + 37 (@],

[37 (@s) + 37 (01 — w)
(wr) +3J (0 + ws)]
AZ%[57 (0) + 37 (w5)]
AZ[37 (0) + 37 (1)),

Y
36

o AN

(30)

+ + +
WIFRWIFENIW >

A
31
P29l + 320, O

3AI—J (01 — ©5) + 6] (0] + 05)], (32)

(33)
+3J (w7 + wg)],

3A44Ac53[3c08 (9s) — 1[J (05)],  (34)

2AqAcr513¢0% (¢r) — 11[J ()], (35)
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ns = 3A4Acs3[3c08 (9s5) — 11157 (0)

(36)

+ 37 (ws)],
I = 3AdAc33c08 (¢) — 11[57 (0) @a7)

+3J (@],

with

O = prMjo+ o Mso, (38)
Os = oMjo+ psMso, (39)
Ois = dsMso + 51 Mjo, (40)

whereM)p and Mgg are the equilibrium magnetiza-
tions of 'H and 1N, respectively: is the relaxation
rate of transverse in-phase magnetizatioig the re-
laxation rate of longitudinal magnetizatiop; is the
relaxation rate of transverse spimagnetization that
is antiphase with respect to spi 24 represent re-
laxation rates of multiple-quantum coherenq&®” is
the relaxation rate of longitudinal two-spin orderis
the longitudinal cross-relaxation rate?¢ is a cross-
relaxation rate between multiple-quantum coherence
componentss is the longitudinal cross-correlation re-
laxation rate and, is the transverse cross-correlation
relaxation rateJ(w) is the spectral density at the angu-
lar frequencyn andg is the angle between the unique
axis of the CSA tensor and the internuclear vecigr
The spectral densitiesl(w), are in principle dif-
ferent for the different relaxation mechanisms, but are
here considered to be the same. This is a good ap-
proximation if ¢ is small (Tjandra et al., 1996). A
useful model for spectral densities is the Lipari-Szabo
approach (Lipari and Szabo, 1982a,b), which describe
the molecular dynamics using a rotational correlation
time t,,, a correlation time of internal motions and
an order parametes.
The interaction constants of the CSA and the DD
relaxation mechanisms are given by

Acs = — (os)) — 051) vsBo, (41)
Acr =— (o1 —011)viBo (42)
and
o\ [ Avrys
A;=3(— , 43
(52 (M) @)

respectively, whergg is the permeability of vacuum;
ris is the distance between spinandS; o)) ando | are

the shielding constants for the parallel and perpendicu-
lar directions in an axially symmetric shielding tensor,
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respectivelyy is the magnetogyric ratio arigh is the
static magnetic field strength of the magnet.

The direct products as described by Equations 10,
11 and 13 applied on the quantum mechanical matrix
in Equation 23 without the unity operat&y2, will in
this case produce a basis set of 30 product operators
and two 30«30 matrices. A quantum mechanical ana-
logue to the McConnell equations is thus formed when
these two matrices are added together. The 30 coupled
differential equations are inhomogeneous, but can be
rewritten as a system of 31 coupled homogeneous dif-
ferential equations in analogy with the transformation
of Equation 7 into Equation 9.

Simulating pulse sequences and NMR spectra
The solution to

%G (t) = —Po (1) (44)

which is a homogeneous first-order differential equa-
tion, is

o(t =11+ A1)=exp[-PAr]o(t=11), (49)

whereP ando are the matrix and vector, respectively,
in Equations 9, 21, or 22.

The complex magnetization can be calculated at
any time by taking the scalar product of the column
vectoro with a row vector that has the elemerits
andi in case ofx magnetization angt magnetization,
respectively. The detection row vector for Equation 21
is thus

[01i01i0] (46)

and the corresponding detection row vector for Equa-
tion 22 is

[001i01i0]. (47)
The column vector which describes the magnetization
at the start of the pulse sequence is for Equation 21

1/2

0

0
. [1]

1] +[S] (48)

0

0
[S]
My———"-——
L T[T+ [S] A

and for Equation 22

o =0 .
(TG =0+ 151 =0

%H(t=0%+[ﬂ(t=0)

0

[1](t =0) (49)
T = 0)0+ [S](r =0
0
[S](z=0)

L Ie=0+[STt=0 |
These vectors are the starting points for all simula-
tions using the homogeneous McConnell equations
as described by Equation 21, or the equations for
non-equilibrium first-order kinetics, Equation 22.

Simulations

In order to illustrate the classical part of the theory
we have simulated three different NMR experiments
useful for studies of slow, intermediate and fast chem-
ical exchange, respectively. The system is in chemical
equilibrium in all three cases. The saturation transfer
method was used for slow chemical exchange (Forsén
and Hoffman, 1963). A plot of line-shape as a function
of exchange rate was used for intermediate exchange
and finally, aT1, experiment as a function of RF field
strength was used for fast exchange (Deverell et al.,
1970).

As an illustration of the use of Equation 22 for
non-equilibrium chemical reactions the line-shape as a
function of time after mixing of components was cal-
culated for a stopped-flow experiment (Kiihne et al.,
1979).

The combination of a quantum mechanical de-
scription of a heteronuclear two-spin system with
chemical exchange was tested by simulating a sen-
sitivity and gradient enhanced two-dimensiofh2M-
HSQC (Kay et al., 1992) during slow chemical ex-
change. The quantum mechanical method of sim-
ulation was also tested by simulating the transfer
efficiency of a two-dimensional heteronuclear cross-
polarization based experiment (Ernst et al.,, 1991,
Allard et al., 1998) as a function of both chemical
shift difference between the two states in chemical
exchange and the exchange rate constants.

All simulations using the homogeneous Mc-
Connell equations were performed using Equations
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of a non-equilibrium chemical reaction which was
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changed simultaneously keeping the ragigks) = 1.
The experiment consisted of a single°padise fol-

calculated using Equations 16-19, 22, 45, 47 and lowed by the calculation of the FID. All relevant
49. The quantum mechanical calculations were per- parameters can be found in the figure legend.

formed using the 3%31 matrix obtained as described
previously.

Saturation transfer

In Figure 1 we show the transfer of magnetization
from spinl to spinS during a saturation transfer ex-
periment (Forsén and Hoffman, 1963). Spirwas
selectively saturated using a selective Gaussiart 270
pulse followed by a weak on-resonance spin-lock. Af-
ter a variable timeyx, a hard 90 pulse was applied
followed by the calculation of the FID. The exact
parameters used are described in the figure legend.
The decay of magnetization on sg8iue to chem-
ical exchange with spihis easily observed in Figure 1

At slow exchange two distinct resonance lines can
be observed with negligible life time broadening due
to chemical exchange. The resonance lines become
very broad at coalescence until a single exchange
broadened line is observed at fast chemical exchange,
as can be seen in Figure 2.

Relaxation in the rotating frame

Fast chemical exchange is most easily quantifiable by
the measurement of they, or T relaxation time as
function of RF field strength (Deverell et al., 1970)
or repetition rate of refocusing pulses (Bloom et al.,
1965). We have chosen tfig, experimentto illustrate
our simulation method. In Figure 3 a contour map of

and can in the ideal case be described by the following the average effective relaxation rate of the two spins in

equation (Forsén and Hoffman, 1963),

S, (1) = Mso( ks
‘ ps + ksi

exp [t (ps + ks))]

pPs
+ .
ps + k5|>

Both the exchange rate constaky;, and the longitu-
dinal relaxation rate of spif, pg, can in principle be
calculated from a fit of Equation 50 to the experimen-

(50)

tal data. The usual approach, however, is to calculate

ksi from the ratio of intensities at time zero and infin-
ity, using a separately measured valueggfgaccording
S.(t=0)

exchange between stateandS as a function of both
the RF field strength and the chemical exchange rate
constant is shown.

The pulse sequence consisted of a hart @lse
followed by a spin-locked relaxation delay and the cal-
culation of the FID. The relevant parameters can be
found in the figure legend of Figure 3.

The two exchange rate constants were set to the
same valuekis = ks;. The exchange rates used in
Figure 3 covers both slow and fast chemical exchange
and single exponential functions were therefore fitted
separately to the decay bfand S magnetization as a
function of mixing timet. The effective average re-
laxation rate was calculated as the mean of these two
relaxation rates.

The maximum intensity in Figure 3 as a function

to
ksi=ps| ——— —1)- (51)
S, (t = 00) of exchange rate corresponds to the coalescence case

In the present case the exchange rate constant as call? Which the effective relaxation rate is very fast. At
culated from the first and last spectrum in Figure 1 POth faster and slower chemical exchange the effec-
and the knowrps using Equation 50 becomes 26% tive rglaxatlon rgte is sloyver. It can be noted that the
too large. This is because the two resonance peaks aréffective relaxation rate is almost independent of RF
so close to each other, only 150 Hz separation, that it fild strength when the chemical exchange is fast.

is very difficult to selectively saturate one resonance A Spin-lock experiment is usually performed on
peak without directly affecting the other. the side of the ridge defined as fast exchange but

close to coalescence. In an actual experiment the ef-
fective relaxation rate is measured as function of RF
field strength and a fit to the following equation is
In Figure 2 we show one-dimensional NMR spectra of performed in order to obtain the correlation time cor-
a resonance undergoing two-site chemical exchangeresponding to the exchange rate (Davis et al., 1994,
between staté and S as a function of the exchange

rate. The exchange rate constarigs, andks|, were

Line-shape analysis
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200

0 1 frequency (Hz)

Figure 1. The simulated transfer of saturation from spito spin S due to chemical exchange plotted as a function of saturation time,

Spinl was selectively saturated by a selective Gaussiafi pidse followed by an on-resonance spin-lock. After the variable time,hard

90° pulse was applied followed by the calculation of the FID. The simulation was calculated using Equations 16-19, 21, 45, 46 and 48. The
following parameters were used in the simulation. The hard pulse field strength was 25 kHz and the spin-lock field strength was 50 Hz. The
270 Gaussian pulse was 10 ms long and consisted of 512 steps with a maximum field strength of 181 Hz and a truncation level of 1%. The
longitudinal relaxation rate of spinsandSwere 1 and 1.5 rads, respectively. The transverse relaxation rates were 4tadas spinl and

5rad s for spinS The offset resonance frequencies were 0 and 150 Hz for 5gindS, respectively. The exchange rate constdgsand

ks were both 2 51, The FID was calculated as 4000 complex data points with a spectral width of 2000 Hz. No apodization function was used.

Akke and Palmer, 1996): obtained at all exchange rates of 400 Hz and above to
RN = pcod 6+ nsir? o+ (2 — Q) within 19.
plps(l—ﬁigxuﬁ) sir? 0 (52) Non-equilibrium NMR
with In Figure 4 we show a simulated variant of a stopped-
1 flow NMR experiment (Kdhne et al., 1979). Only the
Pr= H—@ (53) component in which spih reside exists at the begin-
ksi ning and the componentin which sgmesides appear
1 as a result of chemical exchange. One-dimensional
ps = m (54) spectra are plotted as a function of the time after
kis mixing. The pulse sequence consisted of mixing of
1 pPI DS components, a time delay, a 90 pulse, and the
e T ke ks (55) calculation of the FID. The relevant parameters are
described in figure legend 4.
5 2\ 1/2 N . . R
W, = (wl (P10 + psQs) ) , (56) TheSmagnetization appears with a dispersive line-
shape in the first spectra since the concentration of
w1 S at the start of the FID is zero. At faster chemical
b= arctan( P12 + pSQS> ’ (57) exchange most of themagnetization would already

. have appeared after a few points in the FID and the

w1 = —y By, (58) line-shape becomes predominately absorptive (Kiihne
where p and % are the longitudinal and transverse €t al., 1979). The system approaches equilibrium
relaxation rates without contributions from chemical fapidly and the last spectrum has the correct intensity
exchange is the tilt angle of the effective fieldy; ratio according to the rate constants, see Figure 4.
is the population of spins in site w1 is the spin- ] ] ]
lock field strength in rad s, , is the effective field ~ Quantum mechanical simulations
strength in rad st andr,, is the time constant for the
exchange process im$ which is the inverse of the
pseudo first-order rate constdqt.

In the fit of Equation 52 to the data in Figure 3
the correct time constant for the exchange process was

The quantum mechanical method of simulation was
tested by simulating a sensitivity and gradient en-
hanced two-dimension&N-HSQC (Kay et al., 1992)

during slow chemical exchange between two states.
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Figure 2. Simulated one-dimensional spectra of spiand spinSin exchange as a function of exchange rate. The ratio of exchange rate
constantskjs andkg, was set to 1 in order to keep the equilibrium constant at a constant value. The pulse sequence consisted of @ single 90
pulse, directly followed by the calculation of the FID. The simulation was calculated using Equations 16-19, 21, 45, 46 and 48. The hard pulse
field strength was 25 kHz. The longitudinal and transverse relaxation rates were 1 and&,rmkpectively, for spihand 1.5 and 5 rads,
respectively, for spirs The offset resonance frequency was for dpagual to—50 Hz and for spirSequal to 50 Hz. The spectral width was

200 Hz and a FID of 128 complex points was calculated. No apodization function was used.
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Figure 3. The simulated contour map of the average effective relaxation rate of spid Sin exchange during a1, experiment plotted

as a function of both the RF field strength and the chemical exchange rate. The pulse sequence consisted of auisedf@bwed by a
spin-locked relaxation delay and the calculation of the FID. The two exchange rate corlgtaatgjks, were set to the same value. Single
exponential functions were fitted separately to the decdyanfd S magnetization. The effective average relaxation rate was calculated as the
mean of the relaxation rates bandSmagnetization. The simulation was calculated using Equations 16-19, 21, 45, 46 and 48. The hard pulse
field strength was 25 kHz. The longitudinal relaxation rates for sparsdSwere 1 and 1.5 rads, respectively. The transverse relaxation
rates were 4 rad s for spinl and 5 rad 51 for spinS. The offset resonance frequencies wei&0 and 50 Hz for spinsandS, respectively.
Relaxation delays between 0 and 500 ms in 21 steps were used in the fit of single exponential decays. No apodization function was used.
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Figure 4. A simulated stopped-flow NMR experiment. The one-dimensional spectra are plotted as a function of time after mixing of compo-
nents. The pulse sequence consisted of mixing of components followed by a timerdel&p pulse and the calculation of the FID. Only

the component in which spinreside exist from start and the component in which $piaside appear as a result of chemical exchange. The
simulation was calculated using Equations 16-19, 22, 45, 47 and 49. The exchange rate dogstadks;) were 50 and 103!, respectively.

The longitudinal relaxation rate of spih@ndSwere 1 and 1.5 rad g, respectively. The transverse relaxation rates were 4Tadas spin|

and 5 rad 51 f